At its most fundamental level, inheritance in organisms occurs by means of discrete traits, called genes.[24] This property was first observed by Gregor Mendel, who studied the segregation of heritable traits in pea plants.[9][25] In his experiments studying the trait for flower color, Mendel observed that the flowers of each pea plant were either purple or white – and never an intermediate between the two colors. These different, discrete versions of the same gene are called alleles.
In the case of pea, which is a diploid species, each individual plant has two alleles of each gene, one allele inherited from each parent.[26] Many species, including humans, have this pattern of inheritance. Diploid organisms with two copies of the same allele of a given gene are called homozygous at that gene locus, while organisms with two different alleles of a given gene are called heterozygous.
The set of alleles for a given organism is called its genotype, while the observable traits of the organism are called its phenotype. When organisms are heterozygous at a gene, often one allele is called dominant as its qualities dominate the phenotype of the organism, while the other allele is called recessive as its qualities recede and are not observed. Some alleles do not have complete dominance and instead have incomplete dominance by expressing an intermediate phenotype, or codominance by expressing both alleles at once.[27]
When a pair of organisms reproduce sexually, their offspring randomly inherit one of the two alleles from each parent. These observations of discrete inheritance and the segregation of alleles are collectively known as Mendel's first law or the Law of Segregation.
Wednesday, December 9, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment